skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pierrat, Zoe_Amie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Evergreen needleleaf forests (ENFs) play a sizable role in the global carbon cycle, but the biological and physical controls on ENF carbon cycle feedback loops are poorly understood and difficult to measure. To address this challenge, a growing appreciation for the stress physiology of photosynthesis has inspired emerging techniques designed to detect ENF photosynthetic activity with optical signals. This Overview summarizes how fundamental plant biological and biophysical processes control the fate of photons from leaf to globe, ultimately enabling remote estimates of ENF photosynthesis. We demonstrate this using data across four ENF sites spanning a broad range of environmental conditions and link leaf- and stand-scale observations of photosynthesis (i.e., needle biochemistry and flux towers) with tower- and satellite-based remote sensing. The multidisciplinary nature of this work can serve as a model for the coordination and integration of observations made at multiple scales. 
    more » « less
  2. Summary A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or ‘proximal’ remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site‐level eddy‐covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high‐spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions. We provide current best practices for data availability and metadata for proximal remote sensing: spectral reflectance, solar‐induced fluorescence, thermal infrared radiation, microwave backscatter, and LiDAR. Our paper outlines the steps necessary for making these data streams more widespread, accessible, interoperable, and information‐rich, enabling us to address key ecological questions unanswerable from space‐based observations alone and, ultimately, to demonstrate the feasibility of these technologies to address critical questions in local and global ecology. 
    more » « less